Sangame

Corporate Presentation

May 2019

Forward-Looking Statements

Abstract

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995, as amended. These forward-looking statements include, but are not limited to, statements relating to the design of clinical trials and expected timing for enrollment and presentation of data; the anticipated clinical development milestones and other potential value drivers in the future; the expected benefits of our collaborations, the expanded capability of Sangamo's technologies; the research and development of novel gene-based therapies and the application of Sangamo's ZFP technology platform to specific human diseases; successful manufacturing of our product candidates; the potential of Sangamo's genome editing technology to safely treat genetic diseases; the potential for ZFNs to be effectively designed to treat diseases through genome editing; and the potential for CAR-T and CAR-Tregs to effectively treat diseases. These statements are based upon our current expectations and speak only as of the date hereof. Our actual results may differ materially and adversely from those expressed in any forward-looking statements as a result of various factors and uncertainties. Factors that could cause actual results to differ include, but are not limited to, the dependence on the success of clinical trials of lead programs, the lengthy and uncertain regulatory approval process, uncertainties related to the timing of initiation, enrollment and completion of clinical trials, whether clinical trial results will validate and support the safety and efficacy of Sangamo's therapeutics, risks and uncertainties related to preliminary data, whether the preliminary data from ongoing clinical trials and will be representative of final results, whether the final results from ongoing clinical trials will validate and support the safety and efficacy of SB-525, ST-400 and our other product candidates, and the reliance on partners and other third-parties to meet their obligations. Further, there can be no assurance that the necessary regulatory approvals will be obtained or that Sangamo and its partners will be able to develop commercially viable gene-based therapeutics. Actual results may differ from those projected in forward-looking statements due to risks and uncertainties that exist in Sangamo's operations. These risks and uncertainties are described more fully in Sangamo's Quarterly Report on Form 10-Q for the three months ended March 31, 2019 as filed with the Securities and Exchange Commission. Forward-looking statements contained in this presentation are made as of the date hereof, and Sangamo undertakes no obligation to update such information except as required under applicable law.

We are committed to translating ground-breaking science into genomic medicines that transform patients' lives

Our capabilities allow us to design therapeutic approaches targeting the underlying genetic causes of disease

Gene Therapy

Gene therapy provides tractable, valuable nearterm opportunities

Our capabilities allow us to design therapeutic approaches targeting the underlying genetic causes of disease

Our capabilities allow us to design therapeutic approaches targeting the underlying genetic causes of disease

Sangamo's genomic medicines encompass a breadth of technical approaches and diverse pipeline assets

Robust pipeline of genomic medicines in clinical and preclinical stages of development

Gene Therapy

SB-525: Hemophilia A

ST-920: Fabry disease

Sangamo's gene therapy platform: potential for potent therapeutic solutions for monogenic diseases

Packaging into
AAV vectors
transgene

$2000000000<$

 $A A V$ vectors

Delivery To the liver

SB-525, gene therapy for hemophilia A

Phase I/II Open Label Study

Dose Escalation Complete

March 2019 SMC Review

- Expand $3 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$ cohort

Next steps

- Enroll up to 5 additional patients

$3 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$
(Patients did not receive prophylactic steroids)

IND open

Goals

Patient safety

SB-525: Safety summary - adverse events related to study drug*

Event	$\begin{gathered} 9 \times 10^{\wedge} 11 \\ \mathrm{vg} / \mathrm{kg} \\ (\mathrm{~N}=2) \end{gathered}$	$\begin{gathered} 2 \times 10^{\wedge} 12 \\ \mathrm{vg} / \mathrm{kg} \\ (\mathrm{~N}=2) \end{gathered}$	$\begin{gathered} 1 \times 10^{\wedge 13} \\ \mathrm{vg} / \mathrm{kg} \\ (\mathrm{~N}=2) \end{gathered}$	$\begin{gathered} 3 \times 10^{\wedge 13} \\ \mathrm{vg} / \mathrm{kg} \\ (\mathrm{~N}=2) \end{gathered}$	Overall $(\mathrm{N}=8)$
Tachycardia (Gr 1)	0	0	0	1	1
Fatigue (Gr 1)	0	0	0	1	1
Pyrexia (Gr 2)	0	0	0	2	2
ALT increased (Gr 1)	0	2	0	1	3
Myalgia (Gr 1)	0	0	0	1	1
Hypotension (Gr 3)	0	0	0	1	1

number of subjects with each event

SB-525: Factor VIII activity - chromogenic, linear scale*

\ldots Patient $4(2 e 12 \mathrm{vg} / \mathrm{kg})$
\longrightarrow Patient 5 (1e13 vg/kg)

- - Patient 6 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
\leadsto Patient 7 (3e13vg/kg)
\longrightarrow Patient 8 ($3 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)

Data for Patients 1, 2 and 3 are not displayed due to their continued use of recombinant FVIII replacement

FVIII values with sample dates prior to treatment and up to 1 week after he treatment date or with sample dates within 3 days after a Factor VIII infusion are excluded

Same color indicates same cohort
Patient 4 Week 52 value excluded as values indicate an artifact, as both one-stage and chromogenic assay values are identical only after factor intake. New samples are being collected to confirm
Program: FVIII-
Coagulation_ReadOut.sas Run Date: 27MA $\bar{R} 19$ by mtian

SB-525: Factor VIII activity - chromogenic, log scale*

\ldots Patient $4(2 e 12 \mathrm{vg} / \mathrm{kg})$
-— Patient 5 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)

- - Patient 6 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
\leadsto Patient 7 (3e13vg/kg)
\longrightarrow Patient 8 (3e13 vg/kg)

Data for Patients 1, 2 and 3 are not displayed due to their continued use of recombinant FVIII replacement

FVIII values with sample dates prior treatment and up to 1 week after the treatment date or with sample dates within 3 days after a Factor VIII infusion are excluded

Same color indicates same cohort
Patient 4 Week 52 value excluded as values indicate an artifact, as both one-stage and chromogenic assay values are identical only after factor intake. New samples are being collected to confirm
Program: FVIII-
Coagulation_ReadOut.sas Run Date: 27MA $\bar{R} 19$ by mtian

SB-525: Factor VIII activity - one-stage clotting, linear scale*

_ Patient 4 (2e12 vg/kg)
—— Patient 5 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
\longrightarrow - Patient 6 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
\leadsto Patient 7 (3e13 vg/kg)
\longrightarrow Patient 8 (3e13 vg/kg)

Data for Patients 1, 2 and 3 are not displayed due to their continued use of recombinant FVIII replacement

FVIII values with sample dates prior to treatment and up to 1 week after the treatment date or with sample dates within 3 days after a Factor VIII infusion are excluded
Same color indicates same cohort
Patient 4 Week 52 value excluded as values indicate an artifact, as both one-stage and chromogenic assay values are identical only after factor intake. New samples are being collected to confirm
Program: FVIII-
Coagulation_ReadOut.sas Run Date: 27MAR19 by mtian

SB-525: Factor VIII activity - one-stage clotting, log scale*

\ldots Patient 4 (2e12 vg/kg)
\longrightarrow Patient 5 ($1 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
-○— Patient 6 (1e13 vg/kg)
\leadsto Patient 7 ($3 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$)
\longrightarrow Patient 8 (3e13 vg/kg)

Data for Patients 1, 2 and 3 are not displayed due to their continued use of recombinant FVIII replacement

FVIII values with sample dates prior to treatment and up to 1 week after the treatment date or with sample dates within 3 days after a Factor VIII infusion are excluded

Same color indicates same cohort
Patient 4 Week 52 value excluded as values indicate an artifact, as both one-stage and chromogenic assay values are identical only after factor intake. New samples are being collected to confirm
Program: FVIII-
Coagulation_ReadOut.sas Run Date: 27MAR19 by mtian

SB-525: Factor VIII replacement usage reduction*

Subject (dose vg/kg)	Follow-up	Spontaneous bleeds	Regimen before injection	Total infusions since injection post prophylactic period
$8(3 \mathrm{e} 13)$	Week 6	0	$3-4 /$ week	0
$7(3 \mathrm{e} 13)$	Week 12	0	$2 /$ week	0
$6(1 \mathrm{e} 13)$	Week 28	0	$1 / 3$ weeks	0
$5(1 \mathrm{e} 13)$	Week 40	2	$3 /$ week	8
$4(2 \mathrm{e} 12)$	Week 48	3	$3 /$ week	9

Experience with AAV manufacturing and gene construct design can be translated across our gene therapy platform

ST-920, gene therapy for Fabry disease Designed to express α-Gal A enzyme

- 5,000 - 6,000 Fabry patients in US / EU; most diagnosed as adults
- Weekly and bi-weekly ERT infusions (standard of care) may not clear all substrate from secondary organs
- IND accepted by FDA. ST-920 clinical trial initiation expected in 2019
 and Gb3 substrate reduction across tissue types in GLAKO murine model

Gene therapy: upcoming milestones

SB-525: hemophilia A

- enroll $3 \mathrm{e} 13 \mathrm{vg} / \mathrm{kg}$ expansion cohort
- present data at an upcoming scientific meeting

ST-920: Fabry disease

- clinical trial initiation in 2019

Ex Vivo Gene-Edited Cell Therapy

ST-400: Beta thalassemia
BIVV003: Sickle cell disease
TX200: Solid Organ Transplant (CAR-Treg) KITE-037: Allogeneic anti-CD19 CAR-T

Autologous, ex vivo gene-edited cell therapy product candidates for beta thalassemia and sickle cell disease

ST-400, gene-edited cell therapy for beta thalassemia

Phase I/II Open Label Study

Patient Enrollment Ongoing

Potential Advantages

Leverages naturally-occurring, protective mechanism to increase fetal-hemoglobin to reduce or potentially eliminate blood transfusions

Highly efficient, precise gene editing

Non-viral delivery of ZFNs

IND open

Goals

ST-400: Phase $1 / 2$ Thales study summary

- ST-400 product candidate characteristics:
- Non-viral delivery of ZFNs
- Ex Vivo cellular editing of CD34+ HSCs
- Disruption of BCL11A enhancer intended to upregulate endogenous fetal Hb production in RBCs
- First patient has most severe form of transfusion-dependent beta thalassemia (β^{0} / β^{0})
- During ST-400 infusion, patient experienced a serious adverse event (allergic reaction) that rapidly resolved with medical management
- Patient 1 demonstrated neutrophil and platelet recovery within two and four weeks of infusion, respectively, indicating successful reconstitution of ST-400 hematopoiesis following conditioning
- Indels were detected in circulating white blood cells, indicating successful editing of BCL11A erythroid specific enhancer

ST-400: Total hemoglobin and fetal hemoglobin in a β^{0} / β^{0} beta thalassemia patient at 7 weeks post-transfusion*

-- Hemoglobin \uparrow PRBC Transfusion
Total Hb levels of $\sim 9 \mathrm{~g} / \mathrm{dL}$
The patient received several PRBC transfusions for approximately two weeks after the ST-400 infusion

Fetal Hb levels of $\sim 31 \%$

Enrollment in the THALES study is ongoing. Sangamo expects to present longer-term ST-400 data in Q4 2019, including results from additional patients. Until that time, Sangamo is not planning to report additional clinical data from the program.

Cell therapy platform

ST-400: beta thalassemia

BIV/V003. sickle cell disease
CAR-T therapy for oncology CAR-Tregs for immunology

Manufacturing allogeneic T-cell therapies with ZFNs

Simultaneous multiplex editing efficiencies with $3 x$ ZFN KO and $1 x$ targeted integration

POTENTIAL APPLICATION:

Universal T cells with checkpoint gene knock-out

SINGLE STEP EDITING

ZFN Knock-out

- TCR (TRAC)
- HLA-class I (32 M)
- CISH (checkpoint gene)

Targeted Insertion

- GFP (into TRAC)

Regulatory T cells (Tregs): a new class of cell-based therapeutics

- Tregs maintain immune homeostasis at various tissues
- The suppressive function of Tregs inhibits mounting inflammatory responses. i.e. Tregs confer tolerance
- Tregs can be used as a cell-based therapy across various applications where induction of immune tolerance can restore homeostasis and counter disease-state
- e.g. prevention of transplant rejection, treatment of a multitude of autoimmune diseases

3 Infusion of Tregs: balance restored

-T regulatory cells
-T effector cellsEngineered Tregs

Sangame

CAR-Tregs have the potential to generate antigen and tissue specific cell therapy products for immunology

Cell Product Characteristics

Engineered CAR-Tregs

Antigen localized: tissue-specific activity

Antigen activated: better controlled cell product and dosing

Robust and scalable processes

Antigen-specific CAR-Treg

(Genetically modified Treg)

TX200: HLA-A2 CAR-Treg for solid organ transplant

 Induction of site-specific immune toleranceInfused CAR-Tregs
designed to bind the
HLA-A2(+) graft

- HLA-A2 antigen on graft is recognized by CAR-Treg cells
- Activated CAR-Treg cells exert site specific suppressive function
- Goal: Achieve tolerance and longterm protection of graft

Phase 1/2 clinical trial initiation expected in 2019 skin graft in a mouse model

Imaging

CAR-Tregs home to intended HLA-A2+ site only
 ($\mathrm{p} / \mathrm{sec} / \mathrm{cm}^{2} / \mathrm{sr}$)

CAR-Tregs present in draining lymph nodes, potentially "educating" the immune system to induce tolerization

Sangamo plans to develop next generation CAR-Treg products with ZFN multiplex editing

(7) Increase Efficacy + Potency
(C) Increase Persistence + Stability

Sangame

Significant unmet medical need in autoimmune diseases

CAR-Treg cell therapies could address several autoimmune diseases with large patient populations and high unmet need

Ex Vivo gene-edited cell therapy: upcoming milestones

ST-400: beta thalassemia

- complete patient enrollment
- present longer-term data (4Q 2019)

BIVV003: sickle cell disease

- complete patient enrollment (Sanofi)

TX200: solid organ transplant

- file CTA

KITE-037: Allogeneic anti-CD19 CAR-T

- initiate clinical trial in 2020 (Kite-Gilead)

In Vivo Genome Editing

SB-913: MPS II
SB-318: MPS I
SB-FIX: hemophilia B

In Vivo genome editing: harnessing the albumin locus in the liver

Packaging into AAV vectors

zinc finger nucleases
transgene

2000000000 $+$

Delivery

In Vivo genome editing: SB-913 (MPS II), SB-318 (MPS I) and SB-FIX (hemophilia B)

- Phase 1/2 clinical trials evaluating these programs are ongoing and data will continue to accumulate throughout 2019. No additional patients will receive the first-generation ZFNs
- As previously announced, Sangamo plans to initiate a new SB-913 clinical trial in 2H 2019 evaluating second-generation ZFNs for MPS II
- Based on data from second-generation ZFN study, Sangamo will make Phase III decision for the SB913 (MPS II) program in 2020 and determine next steps for the SB-318 (MPS I) and SB-FIX (hemophilia B) programs

Second-generation ZFN enhancements improve precision, efficiency and specificity of in vivo genome editing

Modifications to the AAV-ZFN expression construct resulting in increased ZFN activity

Inclusion of transcriptional elements each independently lead to an increase in ZFN activity, resulting in overall greater ZFN protein expression

Research \& Development

Enhancements to ZFN specificity C9ORF72-linked ALS/FTLD
Tauopathies and Huntington's disease

ZFN specificity optimized via two orthogonal approaches

1) Removing Arg-phosphate contacts

Sangame

Independent tuning of dissociation and catalysis

1) Removing Arg-phosphate contacts \rightarrow to tune dissociation rate (k_{-1})

Sangame
.

2) Substituting key Fokl residues \rightarrow to modulate rate of catalysis (k_{2})

Gene regulation platform

Huntington's disease

C9ORF72-linked ALS/FTLD
Tauopathies

Sangamo's gene regulation platform: precise and specific regulation of a mutated gene allele to treat CNS diseases

Packaging into AAV vectors

Gene cassette for ZFP-TFs

In Neurons

Allele specific repression of C9ORF72 with ZFP-TFs exemplifies Sangamo's differentiated therapeutic approach to CNS diseases

- Expansion of the GGGCC six base pair repeat causes neuronal degeneration.
- Cooperative inhibition by ZFP-TFs represses mutant C9 transcripts in an allele-specific fashion.

Normal Allele: $\sim 2-30 \mathrm{x}$

ZFPs are capable of maintaining allele-selectivity over a wide dose range

$>80 \%$ tau reduction achieved in regions of non-human primate brain with AAV coverage

Sangame
ZFP expression and tau reduction are closely correlated

Highly-specific, >98\% human tau reduction in iPS neurons

Finance and Operations

Manufacturing

Upcoming milestones

Q1 2019 financial results and 2019 guidance

2019 Guidance

	Q1 2019	Q1 2018
Revenues	\$in MM, except per share data	
Operating Expenses		12.6
R\&D	34.9	23.5
G\&A	17.1	10.1
Total Operating Expenses	52.0	33.6
Operating Loss	(43.9)	(21.0)
Net Loss	(42.2)	(20.2)
Net Loss per Share	$(\$ 0.41)$	$(\$ 0.23)$
Cash Position		
Ending Cash Balance	$\$ 351.6 \mathrm{M}$	

In-house cGMP facility and dedicated external manufacturing capacity provide scale for clinical research and commercial supply

*Digital rendering of Sangamo cGMP facility

Ensuring control of quality, cost and timelines

- Construction of in-house phase $1 / 2$ cGMP manufacturing facility at Sangamo is underway
- Expected to be operational in 2020
- Expanded Brammer agreement provides access to dedicated AAV manufacturing capacity up to 2000-L bioreactor scale for late-stage clinical and large-scale commercial grade supply
- Allows Sangamo to leverage Brammer AAV manufacturing know-how in Brisbane facility
- Enables seamless transition from early to late stage development and manufacturing
- Sangamo and Brammer have worked together for more than a decade

Milestones and catalysts

In Vivo genome editing

SB-913: MPS II
SB-318: MPS I

- initiate second generation SB-913 MPS II clinical trial in 2H 2019
SB-FIX: hemophilia B

Key takeaways

Genomic medicine company building value with gene therapy, ex vivo gene-edited cell therapy, in vivo genome editing and gene regulation

Precise, efficient and specific gene editing technology (ZFNs) backed by a robust patent estate

Broad portfolio of rare and large indications across inherited metabolic diseases, immunology, CNS, hematology and oncology

Flow of clinical data readouts in 2019 and 2020 following enrollment progress of last twelve months

Strong balance sheet, four validating biopharma partnerships (Kite, Pfizer, Sanofi, Takeda), and manufacturing capabilities

ZFP Technology

Zinc finger proteins
New ZFP architectures

ZFNs: The platform of choice for therapeutic gene editing

Sangamo's engineered zinc finger proteins

- A naturally occurring class of proteins which upregulate or downregulate gene expression
- Sangamo's ZFP library is derived from selected, designed and natural fingers

ZFNs: The platform of choice for therapeutic gene editing

Recent innovations drive performance

Innovation

New linkers for configuring
DNA-binding modules

New dimer architectures yield higher modification activity

Phosphate contact tuning via replacement of key residues

Result

300 -fold increase in design options for targeting any given sequence

Increase DNA editing efficiency to as high as 99.5%

Improved specificity
(>1000 fold reduction of off-target cleavage)

New linkers enable expanded set of ZFN architectures that increase targeting capabilities by 64 -fold

New ZFP-Fokl Linkages

CN dimer

Sangame

COOH
 \rightarrow \square
 NH_{2}

3'- GCGAATTGCGTACCCAGTAC-5'

Engineerable ZFN platform enables precise targeting of a chosen DNA sequence with high levels of editing efficiency

- Platform improvements yielded ZFN designs targeting 25 of 28 possible base steps of HGB1 promoter region (shown in orange)
- Additional cycle of redesign yielded improved ZFN variants with significantly higher cleavage activity (shown in blue)

New architectures yield a dense array of ZFN designs for optimal ontarget efficiency and maximum therapeutic effect

Example: Critical GATAA element in BCL11A

104 ZFN architectures available for targeting \rightarrow GATAA $\pm 10 \mathrm{bp}$

Further protein engineering increases specificity while maintaining high levels of gene modification

Removal of conserved, non-specific phosphate contacts from zinc finger proteins increases targeting specificity

